Wen Li, James D. Howard, Todd B. Parrish, and Jay A. Gottfried have a fascinating article in the most recent edition of Science, ‘Aversive Learning Enhances Perceptual and Cortical Discrimination of Indiscriminable Odor Cues.’ The researchers trained subjects to discern between the aroma of chemicals that initially were indistinguishable using electric shocks (!) coupled with one of the two aromas. The research is a great example of perceptual learning, a form of neural enculturation that I think is absolutely essential to understanding cultural difference but little appreciated in anthropology.
Subjects in the experiment were given a test of their ability to discern between very closely related chemicals: ‘On each trial, subjects smelled sets of three bottles (two containing one odorant, the third containing its chiral opposite) and selected the odd stimulus.’ Before the training, subjects selected the odd odor out 33% of the time — no better than random. After the repeated association of one chemical with shocks, subjects’ ability to discriminate the smells improved markedly, showing that negative reinforcement training could ‘enhance perceptual discriminability between initially indistinguishable odors.’ Moreover, the neural representation of the smells changed, as found with fMRI.
From their abstract:
We combined multivariate functional magnetic resonance imaging with olfactory psychophysics to show that initially indistinguishable odor enantiomers (mirror-image molecules) become discriminable after aversive conditioning, paralleling the spatial divergence of ensemble activity patterns in primary olfactory (piriform) cortex. Our findings indicate that aversive learning induces piriform plasticity with corresponding gains in odor enantiomer discrimination, underscoring the capacity of fear conditioning to update perceptual representation of predictive cues, over and above its well-recognized role in the acquisition of conditioned responses. That completely indiscriminable sensations can be transformed into discriminable percepts further accentuates the potency of associative learning to enhance sensory cue perception and support adaptive behavior.